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Abstract Therapeutic hypothermia (TH) has gained popularity as a brain-protective strategy for victims
of sudden cardiac death in whom return of spontaneous circulation has been achieved but coma persists.
Trials have also demonstrated some advantageous effects of lowering core body temperature after stroke
and hypoxic-ischemic encephalopathy of the newborn. In a variety of clinical conditions, TH is still
being studied (eg, hepatic encephalopathy and traumatic brain injury). This study describes the historical
development of TH, its current applications in emergency medicine, and its potential future uses.
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1. Introduction

Hypothermia has been used therapeutically for centuries
[1,2]. Over the past 6 decades, quite a few experimental
models and human clinical trials performed in a variety of
clinicopathologic conditions have demonstrated that lower-
ing body core temperature may confer benefit [3-5].
However, it is only recently that therapeutic hypothermia
(TH) was actually shown to increase the likelihood of
neurologically intact survival in patients with cardiac arrest
[5-7]. As aresult of these findings, TH has gained popularity
as a brain protective strategy for comatose survivors of
sudden cardiac death [5,6,8-10]. Emergency physicians will
undoubtedly find the use of this therapeutic technique
potentially applicable for more than one acute care medicine
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scenario. This study describes the historical development of
TH and its current applications in emergency medicine and
discusses the potential future uses of this mode of treatment.

2. Definitions

Therapeutic hypothermia is a clinician-driven treatment
modality aimed at decreasing core body temperature [2].
There has been some inconsistency in the literature in
defining the range of temperature constituting each level of
TH. Some define mild TH as a core body temperature of
3234°C to 34°C, moderate TH as 28°C to 31.9°C, deep as
11°C to 28°C, profound as 6°C to 10°C, and ultra
profound as 5°C or less [11]. Others consider an induced
decrease of body core temperature to 32°C to 34°C as
being mild-to-moderate TH [8]. Either way, most authors,
as well as the clinical recommendations for TH, currently
suggest a target temperature range of 32°C to 34°C when
hypothermia is induced for post—cardiac arrest therapeutic
purposes [8,12,13].
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3. Historical development of TH

Historical descriptions of the use of TH for various
illnesses are abundant. In ancient Egyptian times, several
references were made regarding the use of cold as local
therapy in the Edwin Smith Papyrus, the most ancient
medical text known [14]. Tannic acid derived from acacia
seeds was used for “cooling the vessels” [8]. Hippocrates
[15] advocated the use of cold water for treating “swellings
and pains in the joints, ulceration, those of a gouty nature,
and sprains” because it “reduces the swelling, and removes
the pain.” Galen suggested cold affusion for tertian fever and
also invented the “Cold Cream,” used to this day for cooling
the skin after sunburn [16]. The Chinese surgeon, Hua To
(circa 200 AD) practiced forced immersion in cold water [17].
Mercurialis provided a personal example for his patients by
immersing himself in the cold springs of the river Arnus so as
to ease the pain of renal colic [18]. Shortly after the invention
of the mercurial thermometer, James Currie documented the
first records of human temperatures in health, disease, and
experimental conditions. He performed a series of studies on
the effect of various methods of cooling upon physiologic
parameters of the human body and subsequently used
cooling techniques for treating several clinical disorders. It
has also been suggested that William Osler lowered the
average mortality from typhoid at the Johns Hopkins
Hospital from 24.2% down to 7.1% by cooling his patients.

The “Russian method of resuscitation,” first described in
1803, consisted of covering the patients with cardiac arrest
with snow in the hope of improving survival [1]. During
Napoleon’s Russian campaign (1812), Larrey attempted to
preserve injured limbs by using TH and used the numbing
effect of the cold for decreasing pain during limb
amputations [19]. He also noted that injured soldiers who
were warmed died earlier than those who were not [20].

In November 1938, Temple Fay [21], a Philadelphia
neurosurgeon, began inducing systemic hypothermia in
patients with cancer to ease intractable cancer pain. Using
a laboratory thermometer that enabled measurements lower
than normal, the first patient was cooled to 90°F by exposure
to the elements and was thus maintained for 18 hours.
Rewarming was performed by applying heat to the body
surface and performing hot coffee enemas. Overall, 169
patients who desired a respite from intractable cancer pain
were treated by Fay with TH [22]. This series of patients was
presented at the Third International Cancer Congress in
1939. However, the article forwarded to Belgium for
publication was confiscated by the Nazis and later used to
justify a series of inhumane experiments, leading to an
aversion to this mode of therapy that would take almost 50
years to overcome. In a late report on this series of patients,
Fay [23] described a mortality rate of 11.2% and a 95.7% rate
of success in pain relief. Fay [24] also developed an induced
hypothermia program for patients with severe head injuries
and reported that TH improved “the recovery of the
conscious state of patients with brain injury.” By this time,

nurse refusal to work in the undesirable environment created
by this treatment and discontent with the poor quality of
temperature control had led Fay to develop the first cooling
blanket for clinical use.

World War II brought a halt to the work of Fay on TH, but
he sent his newly developed equipment to Claude Beck and
Charles Bailey to facilitate their pioneer work on hypother-
mia in cardiac surgery [23]. A decade later, in the 1950s,
Bigelow and McBirnie [3] raised the possibility that inducing
hypothermia during cardiac surgery may be brain protective
[25] and published a series of studies in canine and monkey
models supporting this hypothesis. Shortly after, 2 studies of
post—return of spontaneous circulation (ROSC) hypothermia
(30°C-34°C) were published [26,27]. In one study, the
hypothermic group had a survival rate of 50% (6/12), and the
normothermic group had a survival rate of 14% [27]; these
results are somewhat reminiscent of those published more
than 40 years later [5,6].

Early laboratory studies on hypothermia suggested that
the central nervous system manifests a “cold narcosis”
equivalent to hibernation that is entirely reversible [28]. By
1960, the association between hypothermia and decreased
oxygen consumption and, more specifically, the association
between hypothermia and reduced cerebral oxygen con-
sumption [29], intracranial pressure, and brain volume [30]
had been discovered. This led to broad use of hypothermia
for not only cardiovascular surgery but for head and spinal
cord injuries as well [31].

However, the number of complications observed during
implementation of hypothermia and rewarming led many
clinicians to abandon this technique [32]. Between the 1960s
and the 1990s, the use of TH was reported in only a handful
of publications [33]. The concern of adverse effects of TH
limited the use of this therapeutic intervention. Interest in the
beneficial effects of TH after cardiac arrest was rekindled
sometime during the 1990s when animal experiments began
to clarify the difference between mild-moderate TH and
profound hypothermia and demonstrated that the former may
improve neurologic outcome [33].

As data supporting the positive effects of TH continued
to accumulate, both scientists and clinicians began showing
interest in this treatment modality. By 2002 to 2003, the
American Heart Association and the European Resuscita-
tion Council recommended TH as a treatment modality for
out-of-hospital comatose patients with cardiac arrest with
ROSC [12,13,34,35]. This clinical recommendation was
based on the results of 2 prospective, randomized,
controlled, clinical trials conducted in Europe and Australia
[5]. Concerns as to the methodology of these studies have
been raised by practicing clinicians. It has been stated that
external funding has often hampered research in areas
lacking potential marketable pharmaceutical developments;
no “single bullet” is expected to improve the outcome of
cardiac arrest [4,36]. However, issues surrounding informed
consent in resuscitation research remain somewhat prob-
lematic in the United States, even despite the Food and
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Drug Administration’s provided revisions in “the Final
Rule” of 1996 [37-41].

The seminal European and Australian studies examined
the impact of TH on the outcomes of patients with out-of-
hospital cardiac arrest who had achieved ROSC but had a
high likelihood of anoxic brain injury. The multicenter study
conducted in Europe by Holzer and coworkers [10] enrolled
a total of 275 cardiac arrest patients, including patients with
an arrest secondary to ventricular fibrillation (VF). The study
group (n = 137) was treated with TH, and the control group
(n = 138) was kept normothermic [5]. Therapeutic
hypothermia was induced by a device circulating cold air
combined with the use of ice packs and was maintained at
32°C to 34°C (bladder temperature) for 24 hours. Patients in
the TH group had better neurologic outcomes and a lower
mortality rate than did controls [5]. The Australian trial,
headed by Bernard and collaborators [6], recruited patients
with shockable rhythms only and produced similar results
using cold packs. In both studies, those assigning the patients
to hypothermia and performing the initial cooling procedures
were the emergency medicine staff. Later analyses of TH
studies demonstrated that the numbers needed to treat were 7
patients to save one life and 5 patients to improve neurologic
outcome [42].

4. How does TH help the brain?

After circulatory arrest, a cascade of neurologic events
occur. Within the first 10 seconds, there will be loss of
consciousness, and after 20 seconds, electroencephalograph-
ic activity becomes isoelectric [2,43]. This is followed by
anaerobic glycolysis, leading to a decrease in energy stores.
Parallel to energy depletion, there is cellular depolarization
with loss of the normal Ca’?' balance between the
extracellular and intracellular compartments [2,43]. Intracel-
lular calcium accumulates and causes premature neuronal
death [8,44].

Tissue injury continues even after achievement of
ROSC and restoration of blood flow. This reperfusion
injury is thought to be secondary mainly to generation of
oxygen free radicals [43,45,46]. The postischemic effects
worsen when patient temperature increases 0.5°C or more
above 37°C [2]. Activation of the N-methyl-D-aspartate
(NMDA) receptors occur as the core body temperature
increases, contributing further to the elevation of intracel-
lular calcium levels [47].

The protective effect of TH was traditionally attributed to
a reduction of metabolic rate [48]. Cerebral metabolism
(estimated by oxygen consumption, glucose utilization, and
lactate concentration) is temperature dependent. Hypother-
mia has been shown to reduce cerebral metabolism by
decreasing all of these parameters [48]. For each 1°C
decrease in core temperature, the cerebral metabolic rate
decreases by 6% to 7% [2,30,49].

At the cellular level, TH protects the cell wall and
maintains the integrity of the lipoprotein membrane [45]. It
further decreases enzymatic reactions that lead to cell
damage or death. [50-52]. In addition, TH inhibits activation
of NMDA receptors [2]. At the tissue level, TH improves
oxygen supply to areas of ischemic brain and decreases
intracranial pressure [8]. For these reasons, TH is commonly
used during surgical procedures in which cerebral blood flow
(CBF) needs to be interrupted, such as cardiac and
intracranial surgery [31,53].

Therapeutic hypothermia can also reduce intracranial
pressure; to this end, TH has been used in patients with
traumatic brain injury (TBI) with increased intracranial
pressure refractory to medical management [54]. Mild-to-
moderate TH (ie, 32°C-34°C) has been shown to decrease
CBF due to cerebral vasoconstriction [48]. This protective
effect decreases intracranial pressure and may also act as an
anticonvulsant [55,56].

5. Other effects of TH

During induction of TH, patients may exhibit a decrease
in heart rate and an increase in systemic vascular resistance
[4]. By decreasing the heart rate, TH also causes a
decrease in cardiac output (approximately 7% for each 1°C
decrease in core body temperature) [57]. Despite this drop,
mean arterial pressure is usually maintained. If a patient
becomes hypotensive during TH, other causes should be
considered (eg, intracranial hypertension and intravascular
volume depletion).

In the past, concerns were raised that TH might impair
the success of defibrillation through a reduction in sodium
channel conductance and increased electrical heterogeneity
via dispersion in the action potential duration [58]. Induced
QTc prolongation (>460 milliseconds), which in itself can
cause polymorphic ventricular tachycardia (VT) and VF,
has also been suggested to lower the threshold for
defibrillation [59]. However, swine experiments demon-
strate that the response to defibrillation may actually be
improved during moderate hypothermia (33°C), compared
with normothermia (37°C) and severe hypothermia (30°C)
[60]. The mechanisms underlying this improvement are not
quite understood. Temperature-dependent amelioration of
ischemic myocardial injury may play a role. However, this
mechanism fails to explain the advantage of moderate over
severe hypothermia [61].

Defibrillation success or failure depends on the balance
between shock-induced extinction and generation of func-
tional obstacles (rotors) [62]. Recent data demonstrating that
moderate hypothermia modifies spiral wave dynamics
suggest that moderate hypothermia, in particular, prevents
reentrant excitations rotating around the rotors responsible
for the genesis of VF. Such an effect would lead to an
increased likelihood of spiral wave collision, favoring self-
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termination of VT and VF [63]. In practical terms, despite
cardiac physiologic and electrocardiographic changes sug-
gestive of an decreased fibrillatory threshold, the likelihood
of successful defibrillation may actually improve during TH,
and defibrillation is safe and effective regardless of the
cooling method used (wet or dry) [64,65].

Ventilation requirements are reduced during TH because
of the decrease in metabolic rate. In spontaneously breathing
patients, ventilation decreases in an attempt to maintain Pco,
within the reference range [4]. The solubility of gases in
blood increases as body temperature decreases [4].

Whether blood gas data should or should not be
corrected for core body temperature remains controversial
even in deep hypothermic circulatory arrest, which has
been used for many more years than TH (pH-stat vs alpha-
stat). Furthermore, it is not clear that studies involving
deep hypothermic circulatory arrest are also applicable in
the setting of post—cardiac arrest at 32°C to 34°C TH. The
absence of prospective data regarding use of pH-stat vs
alpha-stat in mild TH post—cardiac arrest has resulted in a
fair degree of equipoise in previously published retrospec-
tive studies of acid-base management specifically in this
setting [66,67]. The optimal blood gas strategy remains
unclear, pending prospective studies specifically in the
setting of mild TH, and will likely be contingent to some
extent on the clinical entity being treated (elevated
intracranial pressure [ICP], post—cardiac arrest, etc).

Increased renal blood flow during mild TH leads to
increased diuresis, particularly during the induction phase
[57,68]. Also, during this phase, there is increased entry of
potassium into the cells, leading to hypokalemia. Correction
of this “derangement” can lead to hyperkalemia during
rewarming [4,69]. Similarly, TH decreases phosphate and
magnesium concentrations, but this does not require
correction [70-74].

In most patients undergoing TH, gut motility is impaired
[4]. Enteral nutritional support is usually withheld until TH
has been completed and bowel motility returns to normal [8].
Therapeutic hypothermia decreases plasma insulin, with
resultant hyperglycemia [75,76]. Most patients undergoing
TH require exogenous administration of insulin [2,77,78].

Therapeutic hypothermia has unfavorable effects on
platelet function. It also prolongs the prothrombin and partial
thromboplastin times [11]. Significant bleeding, however, is
rarely observed in these patients [8]. An increased incidence
of neutropenia and susceptibility to infections, particularly
pneumonia, has been reported [4,11].

6. Conventional and innovative
cooling techniques

Therapeutic hypothermia can be accomplished in a
variety of ways [2,8,64,79-81]. The ideal cooling device
does not exist; such a device would induce rapid temperature

reductions, preferentially cool the target organ (ie, the brain),
be environmentally versatile (lightweight, small, transport-
able, and sturdy), and be implementable in any setting even
during the resuscitation itself [82]. Because no single
technique is appropriate for all patients and all settings,
emergency clinicians should consider the method of cooling
best suited to the individual. In many instances, a
combination of techniques is used to induce and maintain
TH [2].

The techniques most commonly used to induce and
maintain TH are surface and invasive cooling (see Table 1).
Surface cooling is most widespread because it is relatively
simple to implement. However, achieving the target body
temperature with this technique usually takes 2 to 8 hours, a
relatively long time [12,13,83]. External cooling is also not a
very efficient method of reducing the temperature of target
organs (ie, brain and heart). It is therefore often combined
with an additional cooling method. For example, decreasing
the temperature of the mechanical ventilator circuit will
enhance cooling through use of the lung surface as a heat
exchanger. The exaggerated shivering response triggered by
what surface cooling requires is another major disadvantage
with this technique [84]. Expert management is required to
prevent this response; the potential increase in oxygen
consumption brought about by shivering may counteract the
advantages of TH.

Surface cooling can be performed in several methods.
Low-cost techniques include ice packing [8] and alcohol
baths (usually considered a temporary measure before
definitive cooling). Recirculating cold-water blankets or
cold air—forced blankets can also be used [80,85-87]. Total
body cold-water immersion has been described, but this
method may compromise the quality of monitoring and
therapy. Devices that control temperature through a feedback
mechanism are generally preferable but more expensive.
Higher cost methods including, for example, self-adhesive,
hydrogel-coated pads that circulate temperature-controlled
water under negative pressure are commonly used for
external cooling. The mean rate of temperature reduction

Table 1  Cooling techniques
Noninvasive Invasive techniques
techniques

Caps or helmets
Cooling blankets

Intraventricular cerebral hypothermia
Extracorporeal circulating cooled
blood

Hydrogel-coated Infusion of cold IV fluids

cooling pads

Ice packs Peritoneal lavage with cold exchanges
Immersion in cold Retrograde jugular vein flush
water

Nasal, nasogastric, and rectal lavage
Nasopharyngeal balloon catheters

IV indicates intravenous.
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when using this method was 1.4°C/hour, and the median
time to achieve target core body temperatures was 137
minutes [88].

The obvious disadvantages of surface cooling have led to
the development of more invasive approaches to cooling.
With the exception of one method, all invasive cooling
techniques are currently limited to the inllhospital environ-
ment; most are rather cumbersome and require setup in a
relatively sterile environment. However, endovascular cool-
ing provides better time within the target temperature range,
less temperature fluctuation, and better control during
rewarming [89]. Invasive cooling methods include cold
carotid infusions, single-carotid artery perfusion with
extracorporeal cooled blood circulation, ice water nasal
lavage, cardiopulmonary bypass, cold peritoneal lavage,
nasogastric and rectal lavage, and the infusion of cold
intravenous fluids (4°C) [79,80,85]. Among these, only
infusion of cold intravenous fluids has been shown to be both
manageable and effective in the emergency and prehospital
setting [90]. Bernard and coworkers [91] enrolled 22
comatose post-ROSC patients to receive 30 mL/kg of
+4°C Ringer’s lactate solution intravenously for 30 minutes
after initial evaluation in the emergency department (ED).
Kim et al [92] treated 17 patients (of the 25 screened patients
and of the 285 patients with ROSC ) to receive 2 L of 4°C
normal saline during a period of 20 to 30 minutes, with an
intravenous pressure bag inflated to 300 mm Hg in the ED. In
another ED study, Kliegel and collaborators [93] rapidly
infused 2 L of cold fluid without untoward adverse effects,
allowing more rapid attainment of the target temperature.
Kamarainen and coworkers [94] randomized 37 of 44
screened patients to prehospital TH (n = 19) and control
(n = 18) groups. Baseline temperatures were similar in the 2
groups. After infusion of an average of 27 mL/kg (+4°C
Ringer’s acetate, rate ~100 mL/min using a pressure bag)
during 37 £ 16 minutes, core temperature was markedly lower
in the hypothermia group at the time of hospital admission
(34.1°C+£0.9°C vs 35.2°C £ 0.8°C, P <.001). A more recent
study demonstrated that prehospital induction of hypothermia
decreased core temperature at hospital arrival but did not
improve outcome at hospital discharge compared with
cooling commenced in the hospital [7].

Endovascular heat-exchange devices have also been
developed to this end. These devices circulate cold saline
through an indwelling venous catheter placed percutaneously.
These multilumen intravascular catheters have 2 to 3 cooling
balloons and therefore require insertion into a major vein
[83,95]. Several anatomical approaches (ie, femoral,
subclavian, and internal jugular veins) may be used [95].
However, the femoral site may be preferable because of the
lower likelihood of dysrhythmias.

Researchers continue to investigate alternative techniques
to expedite achievement of target TH temperatures safely. Of
particular interest are techniques in which the brain alone is
cooled, that is, selective brain cooling [96]. These include
noninvasive and invasive methods. A variety of cooling caps

and helmets have been designed in an attempt to achieve
noninvasive selective brain cooling [9]. Invasive methods
include retrograde jugular vein flush, femoral-carotid bypass,
and intraventricular cerebral hypothermia [97]. Retrograde
jugular vein flush has even been used effectively in the ED
setting [98].

7. Temperature monitoring

Regardless of the mode of how TH is achieved, reliable
temperature measurements are essential [99]. Core body
temperature can be measured with a variety of probes: rectal,
bladder, vaginal, tympanic, esophageal, or intravascular (eg,
a pulmonary artery catheter) [12,13]. The accuracy and
precision of pulmonary artery temperature measurements are
generally superior to other modes of measurement [100].
Nasopharyngeal and esophageal temperatures correspond to
brain temperature with smaller mean differences than
temperatures measured in body areas further from the brain
and the heart [101]. Tympanic membrane temperature
measurement is noninvasive but does correlate well with
brain and epidural temperatures [99]. However, readings
may be unreliable during head cooling or if the auditory
canal is obstructed (eg, earwax) [99,102,103]. Rectal probes
should probably be avoided; fecal insulation may impair
correlation with intracranial temperatures [8,102].

8. Clinical applications of TH

The Advanced Life Support Task Force of the Interna-
tional Liaison Committee on Resuscitation (ILCOR) recom-
mends TH (32°C-34°C) for unconscious adult patients with
ROSC after out-of-hospital cardiac arrest (Table 2)
[12,13,35]. Although initially recommended for patients
with a presenting rhythm of VF, TH has also been suggested

Table 2
TH
Ideal candidate

The basics of TH

Cardiac arrest with rapid ROSC, VF/VT,
hemodynamically stable, unresponsive

As soon as possible, may still benefit within
8 h or more after ROSC

Ice packs to groin, axilla, and neck
Adjuncts—cold saline boluses
(intravascular catheters), cooling blankets,
fan mist

How soon?

How to induce?

Adjunctive Sedation, paralytic agents
medications

Temperature Continuously monitored
measurement  Bladder, esophageal, rectal, or PA

PA indicates pulmonary artery.
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for patients with cardiac arrest with other presenting rhythms
and for in-hospital cardiac arrests [34].

Although not recommended by guidelines, TH is being
used in many other clinical scenarios [4]. These include TBI,
traumatic cardiac arrest, stroke, neonatal hypoxic-ischemic
encephalopathy, near-drowning, hepatic encephalopathy, the
acute respiratory distress syndrome (ARDS), bacterial
meningitis, and cardiac failure [4,44,99,104-108].

Trials of TH in of TBI have yielded conflicting results
[54]. An early randomized clinical trial performed in a
single medical center demonstrated improved neurologic
outcome when patients were cooled to 33°C for 24 hours
after a mean postinjury delay of 10 hours [109]. This
finding was later contradicted [110], leading several
authors to conclude that the data suggest no survival or
neurologic benefit in patients with severe brain injury
[111,112] and may even endanger patients [113]. Only
recently was the confounding role of poor study design and
inconsistency in study protocols understood; studies on TH
in TBI can be divided into those with protocols for cooling
for a short, predetermined period (eg, 24-48 hours) and
those that cool for longer periods and/or terminate based on
the normalization of intracranial pressure. A recent
Cochrane-style quantitative systematic review of publica-
tions on the subject to date concluded that the best
available evidence supports the use of early prophylactic
mild-to-moderate hypothermia in patients with severe TBI
(Glasgow Coma Scale score <8). When short-term cooling
studies were analyzed separately, mortality and neurologic
outcome remained unaffected. However, long-term or goal-
directed cooling studies demonstrated considerably reduced
mortality (relative risk, 0.62; 95% confidence interval,
0.51-0.76) and a higher likelihood of good neurologic
outcome (relative risk, 1.68, 95% confidence interval, 1.44-
1.96) [114].

Animal models of TH have been shown to decrease the
neurologic sequelae of acute cerebrovascular accidents
[115,116]. Over a decade ago, Schwab and coworkers
[117] demonstrated that TH reduced intracerebral pressure
and levels of some of the extracellular excitatory amino acids
in a cohort of 25 patients with an acute stroke of the middle
cerebral artery territory. Therapeutic hypothermia for acute
ischemic stroke has been evaluated in a few small pilot
studies. Induction volumes of cold fluids have recently been
demonstrated to be safe after acute stroke [118]. Surface
cooling is feasible in awake patients with ischemic stroke,
provided that temperatures are only mildly reduced (35°C)
[119]. Alternatively, cooling to 33°C is possible, but this was
achieved with an endovascular device in the inferior vena
cava and a combination of buspirone, meperidine, and
cutaneous warming with a heating blanket to suppress
shivering [120]. To date, no randomized controlled trials of
TH for acute ischemic stroke have been performed. Logistic
challenges present an important barrier to the widespread
application of hypothermia for stroke and, most importantly,
the need for high-quality critical care. With the advent of

“stroke units,” we are likely at the dawn of a new era of TH
trials in stroke [121].

There is strong evidence to support the use of TH in the
setting of neonatal hypoxic-ischemic encephalopathy
[25,122]. When ILCOR guidelines were last published, the
evidence supporting TH in neonatal hypoxic-ischemic
encephalopathy included 1 large trial (CoolCap, n = 235),
1 small randomized control trial (n = 67), and several
feasibility trials. Since then, several large cooling trials have
either reported significant overall improvement in death or
disability or have stopped recruitment pending final results.
The cumulative data from these trials indicate “a consistent,
robust beneficial effect of TH for moderate to severe
neonatal encephalopathy, with a mean number needed to
treat between 6 and 8” [123].

Therapeutic hypothermia may also be used in patients
with fulminant liver failure complicated by hepatic enceph-
alopathy and intracranial hypertension [124]. Although
clinical trials have yet to prove the benefit of this treatment,
it is rapidly gaining popularity [125,126]. In an experimental
animal model, Rose and collaborators [127] showed that
mild TH decreased cerebrospinal fluid ammonia, reduced
cerebral extracellular concentrations of ammonia, and
decreased brain water leading to a decrease in intracranial
pressure when compared with normothermic controls.
Cordoba and associates [128] in a similar model found that
TH prevented ammonia-induced cerebral edema. Therapeu-
tic hypothermia has also been used as a bridge to liver
transplantation in selected patients [129].

Therapeutic hypothermia has been shown to reduce
hypercapnia, decrease minute volume, improve oxygenation,
and minimize barotraumas in patients with ARDS [4,130].
Villar and Slutsky [131] reported a 34% reduction in
mortality in a series of patients with severe ARDS treated
with hypothermia compared with normothermic controls.

9. Timing and therapeutic window

Experimental and clinical data suggest that TH should
be initiated as early as possible after ROSC because the
extent of brain damage is related primarily to the length of
ischemia [12,13,132,133]. Animal data suggest that the
earlier TH is initiated and the earlier the target temperature
is reached, the greater the chance of a positive outcome
[2,107,134]. These findings emphasize the importance of
expert emergency medicine involvement in the manage-
ment of relevant cases.

In a recent systematic review of the literature on
prehospital induction of TH, only 11 studies were included;
4 induced cooling during active cardiopulmonary resuscita-
tion and 7 performed cooling after ROSC. Eight of the
studies scored “poor” for quality, and the authors of the
metaanalysis noted significant differences in research
methodology and outcome measures that did not enable the
drawing of any conclusions [135].
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However, therapeutic benefit has been reported in
clinical studies even when cooling was delayed for several
hours [12,13]. The authors reported a case in which TH
was delayed for almost 12 hours after ROSC with a good
neurologic outcome [44]. However, it remains clear that
the earlier TH is implemented, the better, and the
emergency medicine practitioner should be aware of this
therapeutic option.

The length of hypothermic therapy required to achieve a
beneficial effect remains unclear. Guidelines stated in
ILCOR suggest maintenance of TH for 12 to 24 hours
[12,13]. In some cases, a longer period of TH may be
beneficial; in the presence of ongoing but potentially
reversible intracranial hypertension, more prolonged therapy
may be required.

A summary of the positive and negative effects of TH is
presented in Table 3.

10. Rewarming

Rewarming should not be performed at a rate faster than
0.5°C per hour to avoid temperature overshoot. This can
easily be achieved with heating air blankets [4]. Many
institutions rewarm during a period of 24 hours with a target
temperature of 36.5°C. During rewarming, shivering should
be controlled, and hypotension should be treated with
intravenous fluids [2]. In cases where intracranial hyperten-
sion is controlled solely with hypothermia, slow rewarming

Table 3 Summary of the negative and positive effects of TH
Pros Cons
General Lowers mortality rates in postresuscitation human Requires appropriate equipment and drugs and expert
studies (NNT = 7) [5,6,11,12,57,91,94] management [2,8,49]
May induce shivering (which increases oxygen
consumption) [2,8,29]
Brain Cellular effects [29,30,32,44,45,48,50]:
1. Protects cell wall and maintains integrity of
lipoprotein membrane
2. Decreases enzymatic reactions leading to cell
damage/death
3. Inhibits activation of NMDA receptors
Tissue effects [ 2,29,32,44,54]:
1. Improves oxygen supply to areas of ischemic brain
2. Decreases intracranial pressure (decreases CBF
due to cerebral vasoconstriction)
Whole-brain effects [29,30,32,45,53,56]:
1. Reduces cerebral metabolism (oxygen consumption,
glucose utilization, and lactate concentration)
2. Anticonvulsant
Overall [ 5,6,7,8,10,43]: Has a direct sedative effect (particularly in very low
improves neurologic outcomes in postresuscitation temperatures) [8,43,112]
human studies (NNT = 5) Requires sedation (which may interfere with neurologic
assessment and/or diagnosis of seizure activity) [2,8]
Cardiac Improves response to defibrillation[64] Decreases heart rate (with secondary decrease in CO) [2]
Increases systemic vascular resistance [8]
Pulmonary Reduces ventilatory requirements [2,8] -

Renal Increases renal blood flow with increase in
diuresis [68]

Metabolic No correction of electrolyte disturbances
required [2]
Gastrointestinal
Coagulation Significant bleeding is rarely observed [8]
Immune
function

Electrolyte disturbances [58,69] (hypokalemia,
hypophosphatemia, hypomagnesemia)

Decreases plasma insulin with resultant hyperglycemia.
Exogenous administration of insulin is often required [77].
Impairs gut motility. Enteral nutritional support may

need to be withheld [2,8,49].

Decreases platelet function [2,49]

Prolongs prothrombin and partial thromboplastin times [49]
Increases incidence of neutropenia and susceptibility to
infections, particularly pneumonia [2,8,49]

NNT, number needed to treat.
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protocols at a rate of 0.5°C to 1°C per day should be
established [4,8,136].

11. Complications and practical considerations
during TH

Shivering is an important adverse effect of TH; it
increases overall oxygen consumption and should be treated
aggressively [12,13]. Shivering must be avoided pharmaco-
logically through appropriate administration of sedation and
antishivering agents (eg, meperidine and magnesium) before
induction of hypothermia. Midazolam (0.15 mg kg™ ! h™1)
together with fentanyl (2.5 ug kg™! h™!) may be used
initially, with adjustment of the doses to facilitate mechanical
ventilation [137]. Indeed, a recent survey of the sedation
protocols used for TH, midazolam was the sedative used in
most (39/68) intensive care units (ICUs) (doses, 5-0.3 mg
kg™! h™1) [138]. In our ICU, we prefer propofol with or
without remifentanil because of the rapid reversal of their
neurologic effects and lack of residual sedation, enabling
more accurate neurologic assessment shortly after return to
normothermia [139]. In the above-mentioned survey,
propofol was used in 13 of 68 ICUs at doses up to 6 mg
kg ! h™!. Not all ICUs use analgesics; 18 (26%) of 68 ICUs
did not. Fentanyl was the analgesic used the most, in 33 of 68
ICUs, at doses between 0.5 and 10 ug kg™! h™! [138].

Neuromuscular blocking agents may be required in some
cases [112,13], particularly if shivering remains uncon-
trolled. In these cases, it is preferable to use a short-acting
agent such as rocuronium (0.5 mg/kg bolus, 0.5 mgkg ' h™!
continuous) for similar reasons if possible. Continuous or
intermittent electroencephalographic monitoring is recom-
mended to rule out seizure activity if anticonvulsants are not
used as part of the sedation protocol [60]. Care should be
taken to ensure amnesia throughout TH and full reversal of
muscle relaxation at the time of arousal. This is particularly
true when pancuronium is used for muscle relaxation. In the
multicenter survey, pancuronium was the muscle relaxant
most commonly reported as being used (24/68 ICUs),
followed by cisatracurium in 14 of 68 ICUs.

Dysrhythmias, hyperglycemia, infections, and coagulo-
pathy have all been reported as complications of TH
[33,111]. The role of empiric prophylactic antibiotics during
TH in preventing infection remains unclear. The infection
most commonly associated with TH in survivors of
cardiopulmonary resuscitation is pneumonia, which can
easily be attributed to aspiration during the resuscitation
itself. An early metaanalysis of TH found a trend toward a
higher incidence of sepsis in the hypothermia group, but
other complications such as pneumonia, renal failure, or
pancreatitis occurred equally often in both groups. Bleeding
occurred more often with TH, but this was not statistically
significant [10]. A more recent Cochrane Database Review
found no significant differences between patients treated and

those not treated with TH in all of the following potential
complications of treatment: bleeding of any severity, need
for platelet transfusions, pneumonia, sepsis, pancreatitis,
renal failure/oliguria, hemodialysis, pulmonary edema,
seizures, lethal or long-lasting arrhythmias, cardiac compli-
cations, hypocalcemia, and hypophosphatasemia [140].

All patients undergoing TH should receive deep vein
thrombosis prophylaxis in the form of sequential compres-
sion devices at the minimum.

12. Conclusions

Animal and human data demonstrate that TH confers
protection against ischemic neuronal injury. Mild TH has
proven beneficial for comatose survivors of cardiac arrest
with ROSC and for neonates with hypoxic-ischemic
encephalopathy. Therapeutic hypothermia has thus become
the standard of post—resuscitation care and is likely to
become so in neonatal hypoxic-ischemic encephalopathy.
Therapeutic hypothermia may also be beneficial in a variety
of other clinical conditions (eg, acute liver failure, TBI, and
cold-water drowning). To date, combined external and
intravascular cooling techniques seem to be most efficient
for inducing and maintaining TH, but selective brain cooling
also seems promising. Therapeutic hypothermia should be
initiated as soon as possible after neurologic injury. A
temperature of 32°C to 34°C for 12 to 24 hours is usually
recommended. Rewarming must be controlled and gradual.
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